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1. Introduction
In order to calculate flow processes in big deep 

reservoir with complex hydrocarbon mixtures, fast 
solutions for reservoir dynamics are needed, since not 
only the PVT properties and physical phase changing 
processes are complex but also computational domains 
are large. The classical Integral Finite Difference meth-
ods could require millions of elements making the 
numerical method computationally expensive. One 
approach to overcome this problem is to use the the-
ory of potential flow. The fundamentals of potential 
flow theory can be traced back to the 19th century [2]. 
Modeling fluid flow and transport on the bases of the 
potential flow theory dates back to the seminal work 
of Muskat [8]. Since then, several authors have applied 
and extended the underlying concepts for applications 
to petroleum reservoir modeling [9-15]. 

Streamline method has a number of advantages 
over Integral-Finite-Difference Simulation: It requires 
fewer data and fewer computational resources, hence 

it is easy and fast to implement; it is faster and works 
in real-time [2]. Using streamline method as a basis, 
and to predict the parameters on the external reservoir 
boundary, it is possible to apply the material balance 
equations and the solution of the one-dimensional 
flow problem to determine the flow rates in any cell of 
the reservoir. In this case, the simulation performance 
will depend from the representation of the complex 
hydrocarbon mixture. For example, a gas-condensate 
mixture (like volatile oil) is a complex hydrocarbon fluid 
system. Its gas contains heavy hydrocarbon components 
which condensates with decreasing reservoir pressure 
below the dew point, leading to the formation of a 
liquid phase (when, in volatile oil, lighter components 
evaporate and a gas phase is created) in the reservoir. 
This leads to a two-phase hydrocarbon system in the 
reservoir. The mass transfer of components takes place 
between these phases. In this sense, there are basically 
two approaches to the hydrodynamic modeling of the 
flow process of complex hydrocarbon systems, such as 
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gas condensate mixture, and volatile oil. According to 
the first approach, the movement of the hydrocarbon 
mixture is considered by analogy with the movement 
of dissolved gas in live oil (dissolved condensate in gas, 
similar to the Black-oil) model. According to the second 
approach, the hydrocarbon mixture is represented as 
a two-phase multi-component hydrocarbon system. 
While the live oil model is easier and more accessible 
to users, its results are not as accurate as in the 
compositional model. However, the compositional 
model requires many parameters, which makes 
mathematical modeling more difficult. Therefore, 
it is not always applicable in practice. The multi-
component model has several varieties, one of which 
is the Binary model. The Binary model represents 
the complex hydrocarbon systems consisting of two 
mutually soluble pseudo-components and two phases, 
between which the components are allocated.

The following section proposes a technique based 
on the Binary Model and the Potential Flow Theory 
for simulating the development of a reservoir con-
taining a complex hydrocarbon mixture, using gas 
condensate as an example. The results of the comput-
er simulation developed with this technique are also 
presented.

2. Mathematical model of the gas-condensate 
mixture flow through compacting reservoir rocks

Within the framework of the Binary model, the 
movement of the gas-condensate mixture (not taking 
bound water into account) can be represented by the 
following system of differential equations [7]:
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kro(s) and krg(s) are relative phase permeability for  
liquid and gas phases respectively; s is the pore sat-
uration with liquid phase (i.e., condensate); z, β are 
gas compressibility factor and temperature correction 
for gas phase respectively; c is the content of poten-
tially liquid hydrocarbons in the gas phase; µo, µg are  

viscosities of liquid and gas phases respectively;  
Bo is the formation volume factor of the liquid phase; 
Rs is the amount of dissolved gas in the liquid phase; 

( )
( )

o

g

p
p

γ
γ

γ
=

 
is the ratio of specific gravities of liquid and

 
gas phases at reservoir pressure (p); pat is atmospheric 
pressure; ϕ is the reservoir porosity depending on 
reservoir pressure (p); k is the reservoir permeability  
depending on reservoir pressure (p); r  is a radial coor-
dinate; t is a time.   

Equations (1) and (2) describe the radial motion 
of the gas-condensate mixture. (1) is the equation of 
motion of gas and the gas dissolved in the condensate. 
In the beginning, there is no liquid phase (condensate). 
With a drop-in pressure, at a lower condensation 
pressure (i.e. dew point), a retrograde condensation 
phenomenon occurs and a liquid phase is formed in 
the reservoir.

Equation (2) describes the radial motion of the 
liquid phase (condensate) and potential condensate, 
i.e. heavier hydrocarbons (C5+ components) dissolved 
in gas.

Since the main product of the gas condensate reser-
voir is gas, it is necessary to solve equation (1) to deter-
mine the well production rate. However, equation (1) 
is non-linear. For an analytical solution, it is necessary 
to linearize it. For this purpose, we use an averaging 
method, according to which the average pressure along 
the formation (in the [rw-  Re] range) is taken for the 
pressure on the right side of the equation. This method 
is quite accurate for changing the reservoir pressure in 
a wide range [1].

This leads to the fact that the right-hand side of 
the equation depends only on time by F(t) function, 
which is further determined by the additional bound-
ary condition:
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r r r
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= − ∂ ∂ 

By introducing a pseudo-pressure function 
( , )gH p s dp constϕ= +∫  this equation can be reduced to 

the following formula:
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Solving (4) with boundary conditions r = Re, H = He(t)
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for the distribution of the H function along the r coor-
dinate (common solution) was obtained:
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Therefore, from (4*) we obtain the gradient of the 
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function H in the following form:
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According to Darcy’s law, the well flow rate is 
determined by the following formula:
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here S, h, ν – the wellbore cross-sectional area, for-
mation thickness, flow velocity of gas condensate 
mixture into the well from the reservoir respectively. 
Thus, considering (4**), we obtain expressions for 
determining the well production rate in the following 
form [17]:
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where Re, rw are the radiuses of the reservoir boundary 
(or well drainage zone) and the well respectively.

Expression (5) allows solving well-test data and 
well production data related problems. However, a 
transition from pseudo-pressure H to the actual pres-
sure p is required to apply the above expression. For 
this purpose, the φ function was investigated, and it 
was established that it could be approximated with a 
high degree of accuracy by a polynomial of the second 
degree:

2( , )p s ap bp cϕ = + +                          (6)

This idea is confirmed by data presented in fig-
ure 1. It depicts changes of φ(p, s) versus reservoir 
pressure. The latter is calculated from equations (3) 
and (6) correspondingly. As can be seen from figure 1, 

the curves almost coincide. Then, taking into account 
approximation (6), we could integrate functions 

( , )gH p s dp constϕ= +∫ within pressure limits [pw, pe], 
so we could obtain the expressions for computing the 
pseudo depression Hk

 - Hs in the following form:
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Here coefficients a, b, c are determined by values of 
φ function at the well bottomhole (i.e. at bottomhole 
pressure) and on the reservoir boundary (i.e. at reser-
voir pressure) in the following way:
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where φe, φw and ϕ  are the values of the integrand at 
reservoir, bottomhole and average reservoir pressures 
respectively; ( , )p sϕ ϕ=   , 2

e wp pp +
= .

Considering (7), the expression for determining the 
inflow to the well (5) takes the following form [5]:
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Expression (9) provides to determine the well 
production rate at a given reservoir pressure. To 
calculate the reservoir pressure and the production rate 
at the next time step, the material balance equations of 
the hydrocarbon system will be used. The next section 
is devoted to this problem.

3. Material balance equations 
Below we get an algorithm to calculate the values 

of reservoir pressure, condensate saturation, and the 
total reservoir pore volume. With this in view, we will 
use the material-balance equations of the liquid and gas 
phases of the hydrocarbon system [6]:
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Based on equations system (10) and (11), we obtain 
a system of differential equations describing temporal 
variation in reservoir pressure and oil saturation state 
[1, 3, 16]: 
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Fig. 1. Comparison of curves of change in φ versus 
pressure: red dotted line- calculated numerically by (3) 

and solid line- by the approximating polynomial (6)
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Here «´» means the derivative with respect to p;
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of the gas and liquid phases; G – the gas oil ratio, 
defined by the following expression:
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As you know, a decrease in pore pressure results 
in deformation of the reservoir under rock pressure, 
which leads to a change in the porosity and perme-
ability of the reservoir. The formation deformation 
can be elastic, elastic-viscous or viscous depending 
on the rheological properties of the rocks. This paper 
considers an elastic formation. The changes in porosity 
and permeability under elastic deformation obey the 
exponential law and are determined by the following 
expressions [5]: 

( )0 0exp ma p pφ φ  = −   and ( )0 0exp kk k p pβ = −     (15)

Here βk and am, are coefficients of permeability 
and porosity change, respectively; ϕ0, k0, ϕ, k – are 
initial and current values of porosity and permeability, 
respectively; p0 – is initial reservoir pressure.

Porosity (15) expression allows us to get: 

0
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From (1), (2), and (14), we can obtain an expression 
for saturation on the reservoir external boundary: 
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where G(p) is determined by (14).  
To determine the recovery factor, we need to 

calculate the initial reserves of hydrocarbons. For a 
gas condensate deposit, they are determined by the 
following formulas:

                                                               and
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Gas recovery and condensate recovery factors are 
determined by the following formulas: 
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The system of ordinary differential equations (12), 
(13) and (16) allows us to determine the change in the 
reservoir pressure, saturation and total pore volume (p, 
s, Ω, respectively) for the next time step. (3) describes 
the dependence of saturation on reservoir pressure.   

4. Potential Flow Theory
Introduces in the 1950s by [4], the Potential Flow 

Theory is an efficient simulation method attracting 
renewed interest. The presence of modern mathemati-
cal and computational capabilities opens up new appli-
cation possibilities. Having the principles of Binary 
modeling in combination with streamline technology 
allows to achieve highly efficient simulation of the 
development process of hydrocarbon reservoirs with 
complex PVT properties, such as gas condensate and 
volatile oils. Below we consider the application of the 
potential flow theory to the case of flow of a gas con-
densate mixture. 

Assume that there are n wells with bottom hole 
potential Фci (where i = 1, 2, ..., n) in a horizontal reser-
voir with thickness h. For n wells, the potential at any 
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point of reservoir (A)  is determined by the formula [4]:
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= + + + = +∑

By placing point A sequentially at the bottom of 
each well, we obtain the expression for the bottomhole 
potential for each of them:

(21)
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System (21) consists of n equations and contains n + 1 
unknowns (n well flow rate and integration constant c). 
An additional equation is obtained by placing point A 
on the reservoir edge:
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By subtracting each of the equations (21) from (22) 
term by term, we eliminate the constant c and obtain 
a system of n equations. By solving n  equations, it is 
possible to determine the flow rates of wells q1, q2, ..., qn 
if the bottomhole and contour potentials Фc1, Фc2, ..., Фcn 
and Фk are given, respectively.

Since Ф = H(p), then Фk = H(pk), Фc = H(pc)       (23)

After subtractions and substitution (23), we obtain a 
system of n equations in the form:
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Substituting the below expressions
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in (25) we obtain a system of n equations for determining 
the flow rates q1, q2, ..., qn in the form: 

(27)

1 11 2 12 1 1

1 21 2 22 2 2

1 1 2 2

. . . . . . . . . . . . . . . . . . .

n n

n n

n n n nn n

q a q a q a c
q a q a q a c

q a q a q a c

 + + + =
 + + + =


 + + + =







The solution to this equation (27) is:
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To draw an isobar and a streamline, we write the 
potential at an arbitrary point M of the reservoir in the 
following form:
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= + + +

By subtracting the left and right parts of (22) and 
(23), respectively, we can obtain the following formula:

(31) 1 2
1 2

1
2

ln ln lnK K K
K M n

M M Mn

r r rФ Ф q q q
h r r rπ
 

− = + + + 
 



Or given ФK
 = H(PK), ФM

 = H(PM) in (31) we get:    (32)

(33)
1 2

1 2

1
2

( ) ( )

ln ln ln

M K

K K K
n

M M Mn

H P H P
r r rq q q

h r r rπ

= −

 
− + + + 

 


Since the value of pressures is the same on the 
isobaric lines, the values of the function H are the same 
at these points.

According to formula (33), the points located on the 
isobars are determined and constructed. Furthermore, 
along the orthogonal lines to the isobars, one can 
also determine the directions of the current lines and 
construct these lines.
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5. Application, results and discussion 
The presented above mathematical model has been 

applied on a computer. A computer simulator of the 
development process of a gas condensate reservoir with 
wells of an arbitrary number was created, where the 
PVT properties of the hydrocarbon mixture, two-phase 
flow and mass transfer between phases, the change in 
permeability and porosity during rock compaction is 
taken into account. The developed simulator allows 
you to set the operating mode for each well separately, 
i.e. wells can be operated either at a given rate of 
production, or at a given pressure drop, or at a given 
bottom hole pressure. The software has been created on 
the basis of the following algorithm:

1. Input of PVT production data of the reservoir 
under consideration, reservoirs parameters and 
well parameters (e.g. coordinates, lift radius, 
operating conditions

2. Initialization of variables: E.g. T := 0; p := p0; s := s0; 
Qg

 := 0; Q0
 := 0; ∆t := τ; .

3. The initial reserves of hydrocarbons (Vg, Vc) are 
calculated according to (18) and (19);

4. For the considered hydrocarbon mixture, the 
relationship between H and p is determined 

by
 

0

0

( , )
p

gH p s dpϕ= ∫  
in the range [0, p0] with  

a fairly small step ∆p. As a result, a table is cre-
ated in memory, consisting of two columns and 

0 0p
p
−
∆   rows. In the later steps, it will be used 

to determine the pressure at each point from 
the calculated value of the H pseudo pressure.

5. Saturation values s are calculated for all 
pressures in steps of ∆p according to (17). The 
results are stored in memory in the form of a 
table consisting of columns p and s.

6. Calculation of production rates  of each well   
(q1, q2, ..., qn) according to (25).

7. Calculation of H(pM) at each point according to (33).

8. Using the dependence of p(H), we pass from 
pseudo pressure to real pressure at each point. 

9. Saturation is determined at each point using the 
s(p) dependence

10. Production per time step of wells for gas and 
condensate are accumulated, respectively:

1 1
: ; :

n n

g g gi o o oi
i i

Q Q q t Q Q q t
= =

= + ⋅ ∆ = + ⋅ ∆∑ ∑
11. The current values of the gas and condensate 

recovery factors are calculated: 

,g c

g c

Q QGRF CRF
V V

= =

12. The time counter is being updated: T :=  T + ∆t.
13. The current values of pressure and saturation 

on the reservoir external boundaries are calcu-
lated according to (12) - (14), (16) and (17).

14. Checking the simulation termination condition 
- if the condition is satisfied, go to the 15th step, 
otherwise go to step 6.

15. Save the results.  
16. Terminate the program.
The user interface of the program is shown in 

figure 2. Simulation results are shown in figures 3-5. 
Figute 3 shows the main panel of the program. It con-
sists of three tabs- Reservoir, Wells and Simulation. 
The Reservoir tab provides input for the key reservoir 
parameters. The Wells tab includes the list of the wells 
with their parameters such as well type (i.e. production 
well, injection well, disabled well, etc.), well radius, 
operation condition (depression or bottomhole pres-
sure or production rate is given), etc. The Simulation 
tab provides simulation options, e.g. time discretiza-
tion, simulation finishing condition.

Using the simulator, some computer studies were 
carried out for a hypothetical reservoir. They are based 
on the PVT data of the gas condensate mixture of 
horizon VII of the Bulla-Deniz field (Azerbaijan). The 
following initial data were used:

Equivalent deposit radius Re
 = 1000 m;

Fig. 2. Main window of the software Fig. 3. Reservoir pressure dynamics curve and a map of 
the current pressure distribution over the reservoir
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Initial reservoir pressure p0
 = 400 atm;

Initial permeability k0
 = 100 mD;

Initial porosity ϕ0
 = 0.2;

Reservoir thickness h = 20 m.  
The reservoir is recovered by three wells. All 

wells have 0.1 m radius and are operated at a given 
drawdown ∆p = 20 atm.

The results obtained (see: in fig. 3-5) showed the 
adequacy of the proposed approach. To verify the 
algorithm, the results of the development simulation 
for one central well were compared with the results of 
the semi-analytical solution obtained by [5].  The results 
confirmed the correctness of the idea underlying the 
proposed approach.

Fig. 4. Reservoir pressure dynamics curve and 
a map of the stream lines

Fig. 5. Pore saturation vs  pressure curve and a map of the 
current pressure-difference distribution over the reservoir

Conclusion
The application of the Binary Modeling principles in combination with some mathematical 

techniques with Streamline technology made it possible to simulate the development of a gas 
condensate reservoir. The results obtained demonstrated the wide possibilities of the proposed 
approach, which takes into account the PVT properties of the hydrocarbon system, two-phase flow, 
phase transformation, mass transfer between phases, and compressibility of reservoir rocks. The 
proposed hybrid approach can also be applied to volatile oil reservoirs. The obtained results once 
again showed the wide possibilities of the Streamline method based on the theory of potential flow.

Nomenclature
Parameters with the «о» and «g» index correspond to a liquid and gas phase, respectively;
p0

 = initial reservoir pressure, atm
pw

 = bottom-hole pressure, atm
pe

 = pressure at the external reservoir boundary, atm
pat

 = atmospheric pressure, atm 
re

 = reservoir or well drainage area radius, m
rw

 = wellbore radius, m 
am

 = rock compressibility factor, 1/ atm
k = formation permeability, 10–12 m2

k0
 = initial permeability, 10–12 m2

kro
 = liquid-phase relative permeability 

krg
 = gas-phase relative permeability 

s = liquid (condensate) saturation
v = velocity, m/s 
Ω = porous volume, m3

Ω0
 = initial porous volume, m3

qo
 = condensate production rate, m3/s

µo
 = condensate viscosity, atm·s

µg
 = gas-phase viscosity, atm·s
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ρ = condensate density
Bo

 = condensate formation volume factor
Rs

 = solubility of gas in liquid phase, m3/m3

z = Z-factor
β = temperature correction factor
c = vaporous hydrocarbons content of the gas phase, m3/m3

( )
( )

o

g

p
p

γ
γ

γ
=

 = ratio of the specific weight of liquid phase and the specific weight of gas phase 

                 at reservoir pressure; 
ϕ = formation porosity
ϕ0

 = initial formation porosity
t = time, s
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